

Course Syllabus

I. General Information

Course name in English	Applied immunotechnologies
Course name in Polish	Immunotechnologia stosowana
Programme	Bioanalytical technologies
Level of studies (BA, BSc, MA, MSc, long-cycle MA)	MSc
Form of studies (full-time, part-time)	Full-time
Discipline	Biological sciences
Language of instruction	English

Course coordinator/person responsible Dr Daria Ler

Type of class (use only the types mentioned below)	Number of teaching hours	Semester	ECTS Points
lecture	30	III	6
tutorial			
classes	30	III	

Course pre-requisites	Principles of Molecular Biology, Biochemistry and Molecular Biology	
	Techniques	

II. Course Objectives

C1- Identify the fundamentals of immunologic science for the management of human disease and its clinical relevance.

C2- Identify key immunologic and molecular processes with comprehensive and consistent design program.

C3- Become proficient with the experimental observations and techniques required to perform the most commonly used protocols at the molecular, cellular, and whole-organism levels.

C4- Identify the components of well-controlled analysis.

C5- Use critical thinking skills to troubleshoot problems as they occur and determine possible causes.

III. Course learning outcomes with reference to programme learning outcomes

Symbol	Description of course learning outcome	Reference to programme learning
		outcome
	KNOWLEDGE	
W_01	Investigate fundamental principles of molecular immunological methods and their implications in human diseases and treatment.	к_W05
W_02	The students will explore the principles of methodology, quality assurance and the application of immuno-technologies to the research and clinical laboratory.	K_W08
W_03	The students are exposed to aspects of statistics, quality control, regulatory issues and applications of immunological	K_W04

	methods to the diagnosis and prognosis of the disease.	
SKILLS		
U_01	The student follows and apply related protocols and tools in	K_U11,K_U08
	basic and clinical research. Successfully develop protocols and	
	implement them.	
U_02	The student comprehend current laboratory approaches	K_U01
	through applying immuno-biochemical and molecular biology	
	principles.	
U_03	Correlating tools used in research with biochemical and	K_U08
	immunological applications on cellular level.	
U_04	To recognize the importance of strong work ethics, persistence	K_U10
	and intellectual integrity.	
U_05	Working as a team member, be responsible, confident,	K_U18
	independent and able to actively participate in discussions and	
	tasks.	
SOCIAL COMPETENCIES		
K_01	Understands gradually the important role of good laboratory	К_КОЗ
	and clinical practice.	

IV. Course Content

1: Properties and overview of immune responses; types of immunity, cellular components.

2: Innate immunity, stimulation and mechanisms of limitations.

3: Antibodies and antigens: structure, synthesis, assembly and expression.

4: The major histocompatibility complex, properties and processing of protein antigens.

5: Immune receptors and signal transduction: immune receptor family, T-cell receptor, Blymphocyte antigen receptor complex.

6: Lymphocyte development and antigen receptor gene rearrangement.

7: Differentiation and functions of CD4+ and CD8+ effector T cells.

8: B cell activation and Antibody production.

9: Mechanism of humoral immunity: neutralization, opsonisation and phagocytosis.

10: Immunologic tolerance and mechanism of autoimmunity.

11: Immunity to microbes: bacteria, fungi, viruses; vaccine development.

12: Transplantation immunology.

13: Tumour immunity: tumour antigens, immune response, immunotherapy.

14: Hypersensitivity: mechanisms and classification, therapeutic approaches.

15: Allergy: IgE production and allergic reactions, genetic susceptibility, pathogenesis and therapy.

V. Didactic methods used and forms of assessment of learning outcomes

Symbol	Didactic methods	Forms of assessment	Documentation type
	(choose from the list)	(choose from the list)	(choose from the list)
KNOWLEDGE			
W_01	Conventional lecture/Discussion	Written test	Evaluated written test/test

W_02	Conventional lecture/Discussion	Written test	Evaluated written test/test
W_03	Conventional lecture/Discussion	Written test	Evaluated written test/test
		SKILLS	•
U_01	Laboratory classes	Observation and Report	Observation report,
			Report printout
U_02	Laboratory classes	Test of practical skills	Rating card
U_03	Practical classes	Observation and Report	Observation report,
			Report printout
U_04	Laboratory classes	Report	Report printout
U_05	Laboratory classes	Observation	Observation report
	COMPETENCIES		
K_01	Laboratory classes	Observation	Observation report

VI. Grading criteria, weighting factors,

Written test to pass the lecture: 100% Laboratory classes:

80% grades from written tests 10% reports 10% practical skills

Mark	Evaluation criteria	
Very good (5)	the student realizes the assumed learning outcomes at a very good level	the student demonstrates knowledge of the education content at the level of 95-100%
overgood (4.5)	the student accomplishes the assumed learning outcomes an over good level	the student demonstrates knowledge of the education content at the level of 85-94 %
Good (4)	the student accomplishes the assumed learning outcomes at a good level	the student demonstrates knowledge of the education content at the level of 75-84%
Quite good (3.5)	the student accomplishes the assumed learning outcomes at a quite good level	the student demonstrates knowledge of the education content at the level of 65-74%
sufficient (3)	the student accomplishes the assumed learning outcomes at a sufficient level	the student demonstrates knowledge of the education content at the level of 55-64%
insufficient (2)	the student accomplishes the assumed learning outcomes at an insufficient level	the student demonstrates knowledge of the education content below the level of 55%

VII. student workload

Form of activity	Number of hours
Number of contact hours (with the teacher)	70 (60 + 10 individual consultation)
Number of hours of individual student work	80

VIII. Literature

Basic li	terature
1.	Abbas, Abul K.; Lichtman, Andrew H.; Pillai, Shiv.: Cellular and molecular immunology 9th ed,
	Elsevier Science Health Science (2017)
2.	Jenni Punt, Sharon Stranford, Patricia Jones, Judy Owen: Kuby Immunology, W. H. Freeman;
	Eighth edition (2018)
Additio	onal literature
1.	The World of the Cell by Hardin, Bertoni, Kleinsmith (PEARSON) (2012)